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Abstract

Fairness has been taken as a critical metric on machine learn-
ing models. Many works studying how to obtain fairness for
different tasks emerge. This paper considers obtaining fair-
ness for link prediction tasks, measured by dyadic fairness.
We propose a pre-processing methodology to obtain dyadic
fairness through data repairing and optimal transport. To ob-
tain dyadic fairness with satisfying flexibility and unambi-
guity requirements, we transform the dyadic repairing to the
conditional distribution alignment problem based on optimal
transport and obtain theoretical results on the connection be-
tween the proposed alignment and dyadic fairness. An op-
timal transport-based dyadic fairness algorithm is proposed
for graph link prediction. The proposed algorithm shows su-
perior results on obtaining fairness compared with the other
pre-processing methods on two benchmark graph datasets.

Introduction
Machine learning has been widely adopted in the real world.
Although remarkable results were achieved on predicting
and decision-making scenarios, unexpected bias often hap-
pens (Stoica, Riederer, and Chaintreau 2018; Besse et al.
2018; Friedler et al. 2019). For instance, the famous new
media company ProPublica found that black defendants
were far more likely than white defendants to be incorrectly
judged as having a higher risk of recidivism in the COM-
PAS system (Angwin et al. 2016). Amazon found that the
AI hiring tool they developed to automate the hiring process
is biased against women (Lauret 2019). Many works emerge
to design algorithms to avoid such biases and obtain fair ma-
chine learning models further.

This work considers achieving fairness in link prediction
tasks. The link prediction task is a common but essential
problem in modern machine learning applications, not lim-
ited to recommendation systems and knowledge graph com-
pletion. The main goal is to predict whether the link be-
tween two nodes exists in a graph. Many existing algorithms,
e.g., Node2Vec (Grover and Leskovec 2016) and GCN (Kipf
and Welling 2017), have been proposed to solve the link
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prediction task with superior performance in many scenar-
ios. However, the collected dataset for the model training
procedure usually has various unexpected biases. This will
lead to unfair results of the obtained link prediction model.
For instance, when collecting data from social media plat-
forms, early works highlighted that users were more in-
terested in conversing with others of the same race and
gender (Khanam, Srivastava, and Mago 2020). Link pre-
diction models trained based on such unfair data will also
tend to predict the existence of links between nodes with
the same sensitive information, thus unfairly disadvantaging
some users. To formally define such an unfair phenomenon,
(Li et al. 2021; Masrour et al. 2020) introduced the dyadic
fairness for link prediction of graphs. The dyadic fairness
criterion expects the prediction results to be independent of
the sensitive attributes from the given two nodes.

Recently, several existing works have been proposed to
achieve dyadic fairness in link prediction tasks, which can
be roughly divided into three categories: 1) in-processing
scheme (Li et al. 2021) considers modifying the learning al-
gorithm to eliminate bias; 2) post-processing scheme (Mas-
rour et al. 2020) attempts to de-bias directly the model’s out-
put after training; 3) pre-processing scheme (Spinelli et al.
2021) aims to repair the graph data before the training pro-
cedure further the link prediction results can satisfy dyadic
fairness. In this paper, our algorithm is established based on
the pre-processing scheme. Compared with the other two
schemes, the pre-processing scheme can be considered the
most flexible fairness intervention (Nielsen 2020). Suppose
the discrimination is removed from the data during the pre-
processing stage. In that case, the processed data can train
arbitrary downstream tasks with no need to be concerned
about the fairness issue. Few works have studied obtaining
dyadic fairness through pre-processing. FairDrop (Spinelli
et al. 2021) proposed a heuristic repairing method that masks
out edges based on the dyadic sensitive attributes. It is easy
to implement but without a theoretical guarantee on achiev-
ing fairness. To design a theoretically sound pre-processing
scheme, FairEdge (Laclau et al. 2021) firstly adopts the Op-
timal Transport (OT) theory to justify whether dyadic fair-
ness can be obtained through a repairing scheme. FairEdge
focuses on the plain graph (the node has no attribute) and
proposes to repair adjacency information distributions (con-
ditioned on sensitive attribute) to the corresponding Wasser-



stein barycenter. The dyadic fairness is obtained once the
adjacency information distributions are all repaired as the
Wasserstein barycenter. However, as for the practically com-
mon attributed graph, these existing methods can not guar-
antee fairness. This is because node i’s feature is influenced
by both its adjacency information and the multi-hop neigh-
bors’ features. Even if the discrimination from adjacency in-
formation is removed, the nodes’ attributes can still intro-
duce discrimination to the data. Thus, how to repair data to
obtain dyadic fairness on the attributed graph is still under-
exploited.

This paper aims to exploit how to obtain dyadic fairness
under the pre-processing scheme. Except for the dyadic fair-
ness, two requirements are concluded to be satisfied when
repairing: 1) flexibility: the repaired data needs to hold
dyadic fairness for a wide range of embedding functions
and predictors due to both of them being unknown during
pre-processing; 2) unambiguity: each node’s attribute and
adjacency information should be determined without ambi-
guity after repairing. To properly obtain the dyadic fairness
satisfying these two requirements, we propose to align the
conditional distributions (node’s attribute-adjacency distri-
bution conditioned on the sensitive features) to the Wasser-
stein barycenter based on optimal transport. We can theo-
retically prove that dyadic fairness with flexibility and un-
ambiguity is obtained when the conditional distributions
are repaired to the same distribution. To make it practical,
we derive an optimal transport-based repairing algorithm
that aligns the conditional distributions to their Wasser-
stein barycenter. Experiments on the CORA and CiteSeer
datasets, our proposed algorithm outperforms the state-of-
the-art pre-processing methods on many fairness metrics.

Related Works
Fairness in link prediction
Although link prediction is a well-researched problem in ap-
plications related to graph data (Al Hasan et al. 2006; Mas-
rour et al. 2015), since fairness in graph-structured data is
a relatively new research topic, only a few works have in-
vestigated fairness issues in link prediction. In Spinelli et al.
(2021), the authors proposed a biased dropout strategy that
forces the graph topology to reduce the homophily of sensi-
tive attributes. Meanwhile, to measure the improvements for
the link prediction, they also defined a novel group-based
fairness metric on dyadic level groups. In contrast, Mas-
rour et al. (2020) considered generating more heterogeneous
links to alleviate the filter bubble problem. In addition, they
further presented a novel framework that combines adversar-
ial network representation learning with supervised link pre-
diction. Following the idea of adversarially removing unfair
effects, Li et al. (2021) proposes the algorithm FairAdj to
empirically learn a fair adjacency matrix with proper graph
structural constraints for fair link prediction to ensure pre-
dictive accuracy as much as possible simultaneously. Most
similar to our method, Laclau et al. (2021) formulated the
problem of fair edge prediction and proposed an embedding-
agnostic repairing procedure for the adjacency matrix with
a trade-off between the group and individual fairness. How-

ever, they still ignore the node attributes, which impact both
the predicting and fairness performance.

Fairness with Optimal Transport
In the context of ML fairness, several works have proposed
using the capacity of optimal transport to align probability
distributions, overcoming the limitation of most approaches
that approximate fairness by imposing constraints on the
lower order moments. Along with this motivation, most of
the existing methods consider using optimal transport the-
ory to match distributions corresponding to different sensi-
tive attributes in the model input space or the model out-
put space, which corresponds to pre-processing (Gordaliza
et al. 2019; Feldman et al. 2015; Laclau et al. 2021) and
post-processing (Jiang et al. 2019; Chzhen et al. 2020) meth-
ods, respectively. In addition, the in-processing (Jiang et al.
2019; Chiappa and Pacchiano 2021) methods based on op-
timal transport achieve fairness by imposing constraints in
terms of the Wasserstein distance in the objective function.

Dyadic Fairness in Link Prediction
In this section, we formulate the dyadic fairness in the link
prediction task and define two metrics (dyadic disparate im-
pact and dyadic balanced error rate) to quantify the dyadic
fairness. Then we conclude two desired properties for our
repairing algorithm that try to obtain dyadic fairness, i.e.,
flexibility and unambiguity. We further theoretically discuss
how these properties can be achieved and prove that aligning
conditional attribute and adjacency distributions to the same
distribution can obtain dyadic fairness with these properties.

Problem setup
Given the graph G := (V, E) with V := {v1, . . . , vN} be
the node set of the graph and E := {e1, . . . , eN} be the
edge set of the graph. Each node vi be endowed with a vec-
tor xi ∈ RM of attributes. Each edge ei is the ith row of a
non-negative adjacency matrix A ∈ {0, 1}N×N which sum-
marizes the connectivity in the graph. Aij = 1 if nodes vi
and vj is connected; otherwise, Aij = 0. The link predic-
tion model usually identify whether the link between two
nodes (i, j) exist based on their node representations, i.e.,
g : zi × zj 7→ {0, 1} where the zi denotes the node i’s rep-
resentation. The zi is usually obtained by random walk or
graph convolution on the whole graph: zi = f(G)[i] where
the f : G 7→ RN×d is called the embedding function. The
d is the node representation’s dimension, and the f can be
Node2Vec, GCN, GAT, etc. The link predictor g takes two
nodes’ representations with the node representations and di-
rectly outputs whether a link between them exists. To study
fairness on link prediction tasks, we assume that all nodes
have one sensitive feature S : V → S. We also take the bi-
nary sensitive feature S = {0, 1} first and let S(i) denote the
sensitive feature of node i. The binary sensitive feature will
be relaxed later. Before proposing our algorithm, we make
two assumptions:

1. P(S ⊕ S′ = 1) = P(S ⊕ S′ = 0) = 1
2 , which is based

on the fact that each node has an equal chance of be-
ing sampled regardless of its sensitive attribute value. For



instance, P(S = man) = P(S = woman) is always
an equivalence relationship independent of the sampling
process and the obtained graph data itself;

2. P(g(zu, zv) = 1|S(u) ⊕ S(v) = 0) ≥ P(g(zu, zv) =
1|S(u) ⊕ S(v) = 1), which illustrates that the classi-
fier we consider here will tend to predict the existence of
links between nodes with the same sensitive attributes.

For link prediction problems, the main unfairness phe-
nomenon is assigning high link probability to nodes with the
same sensitive feature while assigning low probability for
nodes with different sensitive features. For example, a user
may be treated unfairly on social platforms because they are
rarely recommended to users of a different gender or race.
This unfairness can be defined mathematically as in (Li et al.
2021).
Definition 1 Dyadic Fairness: A link predictor g obtains
dyadic fairness if for node representation zi and zj

P(g(zi, zj)|S(i)⊕ S(j) = 1)

= P(g(zi, zj)|S(i)⊕ S(j) = 0).
(1)

When the link predictor predicts the link between two nodes
in the same proportion regardless of whether they have the
same sensitive attributes, the predictor is denoted as obtain-
ing dyadic fairness. Actually, the dyadic fairness described
in (1) is difficult to achieve in real data. Therefore, in order
to better quantify the fairness, we adopt two other essential
fairness metrics, namely dyadic disparate impact (DDI) and
dyadic balanced error rate (DBER), which are defined as fol-
lows:

Definition 2 (Dyadic Disparate Impact) Given a graph
G = (V, E) and a function g(zu, zv) : Rd × Rd → {0, 1},
we define the link prediction function g has Disparate Im-
pact at level τ ∈ (0, 1] on S(u)⊕ S(v) w.r.t.Z if:

DDI(g,Z,S) = P(g(zu, zv) = 1|S(u)⊕ S(v) = 1)

P(g(zu, zv) = 1|S(u)⊕ S(v) = 0)
≤ τ.

(2)

As defined, Dyadic Disparate Impact measures the fairness
level of the predictor. The larger the value of τ , the fairer it
is. Ideally, when the value of τ reaches 1, it means that the
link predictor achieves dyadic fairness.
Definition 3 (Dyadic Balanced Error Rate) For a graph
G = (V, E) and a function g(zu, zv) : Rd × Rd → {0, 1},
we define the dyadic balanced error rate of the predictor g
as the average class-conditional error:

DBER(g,Z,S) = 1

2
(P(g(zu, zv) = 0|S(u)⊕ S(v) = 1)

+ P(g(zu, zv) = 1|S(u)⊕ S(v) = 0)).
(3)

As defined, Dyadic Balanced Error Rate measures the gen-
eral misclassification error of sensitive attributes by g in the
particular case of P(S ⊕ S′ = 1) = P(S ⊕ S′ = 0) = 1

2 .
Then the DBER is guaranteed to be smaller than 1

2 . With
the larger DBER, the data and predictor g will be fairer. If
the DBER is 1

2 , the DDI will be 1, and dyadic fairness is
achieved.

Obtaining Dyadic Fairness
This paper considers establishing dyadic fairness through
pre-processing the graph data. Due to the pre-processing na-
ture, our repairing procedure has no idea what the embed-
ding function f and predictor g are. We thus need to ensure
the repaired data can achieve the dyadic fairness for arbitrary
embedding function and predictor. These are referred to as
the flexibility requirements. Moreover, another straightfor-
ward requirement also needs to be considered: unambigu-
ity. After repairing, each node’s attribute and adjacency in-
formation should be determined without ambiguity.

Firstly, to obtain the wide applicability on predictors (flex-
ibility), we consider the DBER of the most unfair predictor
with the repaired data, i.e.,

Z∗ = argmax
Z

min
g

DBER (g,Z,S) . (4)

Suppose the repaired data Z∗ ensures high DBER under the
most unfair predictor. In that case, it obtains dyadic fairness
with wide applicability on predictors. Although this makes
the problem a bi-level optimization one, the closed form of
g can be obtained with the Bayes formula as in (Gordaliza
et al. (2019)).

Theorem 1 The smallest DBER for data Z is equal to:

min
g

DBER (g,Z,S) = 1

2

(
1− 1

2
W1.̸= (γ̂0, γ̂1)

)
,

(5)
where W1.̸= is the Wasserstein distance between the condi-
tional joint distributions of node representation with Ham-
ming cost function. The γ̂0 and γ̂1 are over Z × Z given
S(u)⊕ S(v) = 0 and S(u)⊕ S(v) = 1.

As showing the theorem, the dyadic balanced error rate of
the most unfair predictor depends on the Wasserstein dis-
tance between the two conditional dyadic node representa-
tion distribution (γ̂0, γ̂1). When W1.̸=(γ̂0, γ̂1) = 0, which
means that the two conditional distributions are identical,
i.e.,

P(zu, zv|S(u)⊕S(v) = 1) = P(zu, zv|S(u)⊕S(v) = 0).
(6)

The DBER can achieve the optimal 1
2 and the Z are taken

as dyadic fairness on the sensitive feature S. Thus ensuring
the (6) makes the repaired data achieve dyadic fairness with
wide applicability on arbitrary predictor g.

One straightforward repairing is directly moving the two
conditional distributions to the same distribution. However
node i’s representation zi often occurs multi times in the γ̂0
and γ̂1. When repairing the γ̂0 and γ̂1, the zi will be likely
to assign multi values. For example, as shown in Figure 1,
the direct repairing leads to ambiguity on the A’s attribute.
To achieve the unambiguity repairing, we propose the fol-
lowing proposition.

Proposition 1 The dyadic fairness (6) is satisfied if and only
if the following equation satisfied:

P(zu|S(u) = 0) = P(zv|S(v) = 1). (7)
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Figure 1: The ambiguity illustration of dyadic repairing. The
pair (A,C) and (A,D) are repaired to the two pairs in the
black line. The A’s original attribute is yellow, while in the
repaired data, it has multiple values (’yellow’ and ’purple’),
which leads to ambiguity.

Proof: For the sufficient part, if the (7) is satisfied, then for
arbitrary representation a and b, the

P(zu = a, zv = b|S(u)⊕ S(v) = 0)

=
∑1

i=0P(zu = a|S(u) = i)× P(zv = b | S(v) = i)

=
∑1

i=0P(zu = a|S(u) = i)× P(zv = b | S(v) = 1− i)

=P(zu = a, zv = b|S(u)⊕ S(v) = 1).

As follows, the (6) is satisfied accordingly. For the neces-
sary part, it can be easily proved by contradiction. The above
proposition implies that a fair node representation is suffi-
cient for achieving dyadic fairness in the optimal case. Re-
pairing based on (7) allows us to obtain dyadic fairness and
unambiguity requirement due to the node’s representation
being only repaired once.

After achieving wide applicability on predictors and un-
ambiguity, we consider obtaining the wide applicability on
embedding function f . The embedding function takes the
whole graph G as input and outputs the node representation
zi based on the graph.
Proposition 2 For any node u, v in the graph G, if they have
the same node attributes and adjacency status, i.e,

xu = xv and eu = ev, (8)

then for any embedding function f , f(G)[u] = f(G)[v].
Here the xu, xv denote the attribute of node u and node v,
respectively. And the eu, ev denote the 1-hop adjacency in-
formation, which means the local topology structure of node
u and node v.

This proposition enables us to transform (7) to the follow-
ing one:

P(xu, eu|S(u) = 0) = P(xv, ev|S(v) = 1). (9)

Suppose the above (9) can be obtained. In that case, the
dyadic fairness (1) can further be satisfied for arbitrary pre-
dictors. In the following, we propose an algorithm to make
(9) happen.

Algorithmic Framework
This section introduces a practical algorithm to achieve
dyadic fairness on link prediction tasks based on optimal
transport theory. It can be easily extended to multi-valued
sensitive attributes problems, which relaxes the binary sen-
sitive value constraint.

Dyadic fairness with OT
In order to achieve the dyadic fairness through (9), we first
represent the graph G as a matrix RN×(d+N) where each
row represent one node’s attribute (xu) and adjacency in-
formation (eu). According to the sensitive feature of each
node, we further split the G to G0 ∈ RN0×(d+N) and G1 ∈
RN1×(d+N) where the N0 and N1 are the number of nodes
with S = 0 and S = 1. To bridge it with the optimal trans-
port theory, we assume graph G0 and G1 form uniform distri-
butions γ̂0 and γ̂1. Then our goal can be explicitly described
as minG W1.̸=(γ̂0, γ̂1). To achieve that goal, we transform
the two distributions to their Wasserstein barycenter:

Γ∗ = min
Γ∈Π( 1

N0
, 1
N1

)
⟨Γ,C⟩, (10)

where Ns is the number of nodes in the graph and 1
Ns

is the
uniform vector with Ns elements, i.e., s ∈ {0, 1}.

Cost matrix Considering the distribution γ̂0 and γ̂1 en-
codes two important parts of information about the node,
i.e., feature xu and local topology structure eu, our cost ma-
trix C will consist of two components with hyperparameter
η as a trade-off between the feature term and structure term.

Cij = η||xi,xj ||22 + (1− η)||ei, ej ||22. (11)

Note that although the Hamming distance is used in the
above theoretical results, in practice, to get better results, we
use the squared Euclidean distance.

Repairing procedure Once we obtained the optimal
transport plan Γ∗, we apply it to repair the node feature, and
adjacency information by mapping both G0 ∈ RN0×(N+d)

and G1 ∈ RN1×(N+d) to the mid-point of the geodesic path
between them (Villani 2009) as follows:{

G̃0 = π0G0 + π1Γ
∗G1,

G̃1 = π1G1 + π0Γ
∗⊤G0.

(12)

Multi-class extension In order to extend our approach to
the case of the non-binary sensitive attribute, it would be
necessary to compute the Wasserstein barycenter of the con-
ditional distributions.

Ḡ = argmin
Ḡ∈RN×(N+d)

1

|S|

|S|∑
k=1

min
Γk∈Π

(
1
N , 1

Nk

)⟨Γk,Ck⟩, (13)

where Ck is the cost matrix between Gk and Ḡ. Once we
got the Wasserstein barycenter Ḡ and the optimal transport
plan between the Wasserstein barycenter and each sensitive
attribute group, i.e.,Γk, we will repair Gk as follows

G̃k = NkΓ
∗
k
⊤Ḡ. (14)



Algorithm 1: Dyadic fairness with OT

1: Initialize η and Γ0 ∈ Π( 1
N0

, 1
N1

);
2: Split the graph G ∈ RN×(d+N) into G0 ∈ RN0×(d+N)

and G1 ∈ RN1×(d+N);
3: Compute the cost matrix C with (11);
4: repeat
5: Γ∗ = minΓ∈Π( 1

N0
, 1
N1

)⟨Γ,C⟩;
6: until Convergence;
7: Repair the G0 and G1 with (12).

Experiments
This section specifies the experimental procedure of our ap-
proach on the link prediction tasks and summarizes the anal-
ysis of the experimental results.

Experiment Setup
We first describe the experimental setup, including real-
world datasets, baselines, evaluation metrics, and experi-
ment details.

Datasets Our proposed algorithm is evaluated on two real-
world network datasets. Statistical for datasets are summa-
rized in Table 1.

Table 1: Statistic for datasets in experiments

Dataset #Nodes #Edges #Node attributes |S|
Cora 2708 5278 2879 7

CiteSeer 2110 3668 3703 6

• Cora1 is a citation network consisting of 2708 scientific
publications classified into seven classes. Each node in
the network is a publication, characterized by a bag-of-
words representation of the abstract. The link between
nodes represents undirected citations, and the sensitive
attributes are the category of the publication;

• CiteSeer2 dataset consists of 2110 scientific publications
classified into one of six classes. Similar to the Cora
dataset, the node in the CiteSeer network is also a publi-
cation. Its sensitive attribute is the publication’s category.

Baselines In our experiments, we choose the current two
pre-processing dyadic fairness baselines listed below:

• FairDrop(Spinelli et al. 2021) is a biased dropout strategy
that forces the graph topology to reduce the homophily
of sensitive attributes. Specifically, they generate a fairer
random copy of the original adjacency matrix to reduce
the number of connections between nodes sharing the
same sensitive attributes;

• FairEdge(Laclau et al. 2021) is a theoretically sound
embedding-agnostic method for group and individually

1https://networkrepository.com/cora.php
2https://networkrepository.com/citeseer.php

fair edge prediction. They repair the adjacency matrix of
plain graphs based on the optimal transport theory and
directly ignore the influence of node attributes.

Evaluation metrics Firstly, we expect insight into the
structural changes between the repaired and the original
graph for the pre-processing mechanism. To measure this
change, we use Assortativity Coefficient (AC)(Laclau et al.
2021) to evaluate the correlation between the sensitive at-
tributes of every pair of nodes that are connected. The AC
values between -1 and 1, and the value close to 0 means no
strong association of the sensitive attributes between con-
nected nodes.

For fairness of concern in this paper, we will first use Rep-
resentation Bias (RB)(Buyl and De Bie 2020) to measure
whether the embedding is well-obfuscated, i.e., contains no
sensitive information. Secondly, we extend RB further to
the dyadic fairness considered in this paper: DyadicRB. The
(Dyadic) RB is calculated based on the accuracy of (Dyadic)
sensitive feature classification problem. Take the DyadicRB
as an example; it can be calculated based on the following:

DyadicRB = min
g

1

|E|
∑

(u,v)∈E

(S(u)⊕ S(v)|zu, zv).

Finally, without limiting to unbiased embeddings, we use
the DDI defined in (2) to measure the fairness properties of
the predictions themselves. We evaluate the effectiveness of
our method on the link prediction tasks from both utility and
fairness perspectives. For utility, we use Accuracy (ACC) to
measure the predictor’s performance trained on the data.

Experiment Details For all the experiments, we use
Node2Vec(Grover and Leskovec 2016) as our embedding
function and the support vector classifier as our link pre-
dictor. The node embedding’s dimension is 128, and all the
values are collected with 5 different random seeds. To enable
results reproducing, our codes are open-sourced in Github3,
and more details can be found in it.

Experimental Results
We will evaluate the effectiveness of our proposed method
on real-world datasets at different stages along the pipeline
of the link prediction task.

Impact on the graph structure From Table 2, we can find
that the AC values of the two original graphs are relatively
high, which indicates that the links often appear between
nodes that have the same sensitive attributes. This introduces
the discrimination on the nodes with different sensitive at-
tributes. The three repairing methods can reduce the assor-
tativity coefficient from the original graph. Specifically, our
method achieves smaller AC than the FairEdge, which in-
dicates the effectiveness of our method. Moreover, the Fair-
Drop achieves the smallest AC. It reduces the AC to nega-
tive numbers, indicating that the different sensitive attribute
nodes are more likely to connect. Although the lower AC
it is, the prediction accuracy may be highly influenced, and
this phenomenon is shown later.

3https://github.com/mail-ecnu/OTDyadicFair



Impact on node embeddings Secondly, we consider the
impact on the node embeddings with different repairing
methods. We adopt the two aforementioned metrics i.e., RB
and DyadicRB, to quantify the fairness of the node embed-
ding. As shown in Tables 3 and 4, our method achieves the
best score of RB and DyadicRB. This indicates that after re-
pairing with our method, both the sensitive attribute predict-
ing and dyadic sensitive attribute relation predicting is hard.
The embedding thus is concluded as obtaining the fairness
and the dyadic fairness. To better understand the impact of
our repairing on node embedding, we use PCA to reduce
the learned embedding to the 2-dimension space. As shown
in Figure 2, the embedding learned in the original graph is
distributed with highly correlated to the node’s sensitive fea-
ture, which corresponds to the high RB. Embedding learned
from the repaired graph of our method is less correlated with
the sensitive features, corresponding to the low RB. More-
over, we consider dyadic embedding. As shown in Figure 3,
the learned dyadic embedding of our method is less corre-
lated than the original graph, which indicates the less pre-
dictable of the dyadic sensitive features’ relationship (the
low DyadicRB).

Impact on link prediction We then consider the perfor-
mance of the link prediction task. Two metrics are adopted,
i.e., ACC and DDI. The ACC indicates the utility of the
predictor, while the DDI is the quantity of dyadic fairness
the predictor achieves. For the Cora dataset, all the three
repairing methods lose the ACC to gain dyadic fairness.
Both the FairDrop and our method achieve a high quantity
of dyadic fairness (DDI), but our method achieves a higher
ACC. Compared with FairEdge, our method achieves a sim-
ilar ACC performance while dominating the dyadic fairness
performance. For the CiteSeer dataset, things are different.
FairEdge is hard to gain better fairness after repairing. Com-
pared with the FairDrop, our method achieves high DDI with
a smaller loss of accuracy.

Table 2: Assortativity Coefficient

Dataset Original FairEdge FairDrop Ours
Cora .771 .668 −.089 .397

CiteSeer .673 .645 −.065 .567

Table 3: Experimental Results on Cora. The ↑ (↓) denotes
the higher (lower) the better it is.

ACC ↑ DDI↑ RB ↓ DyadicRB ↓
Original .829 ± .007 .266± .012 .834± .004 .726± .009
FairEdge .663± .008 .393± .073 .655± .004 .596± .031
FairDrop .533± .019 .657± .087 .467± .015 .522 ± .018

Ours .614± .006 .836 ± .106 .172 ± .018 .522 ± .013

Conclusion
This paper proposes a pre-processing method to achieve
dyadic fairness in link prediction tasks. By transforming the
dyadic fairness obtaining problem to a conditional distri-
bution alignment problem, dyadic fairness can be obtained

Table 4: Experimental Results on CiteSeer. ↑ ( ↓) denotes the
higher (lower) the better respectively.

ACC ↑ DDI↑ RB ↓ DyadicRB ↓
Original .820± .011 .372± .019 .661± .005 .658± .009

FairEdge .821 ± .013 .389± .018 .655± .004 .623± .023

FairDrop .532± .024 .717 ± .081 .493± .021 .510± .037

Ours .585± .014 .653± .181 .211 ± .027 .506 ± .036

(a) Original Embedding

(b) Our Embedding

Figure 2: Visualization with PCA of node embedding
learned by the Node2Vec on the Cora dataset. The differ-
ent colors indicate different sensitive attributes. The left is
the node embedding learned from the original graph, while
the right is learned from the graph repaired by our method.

(a) Original Dyadic Embedding (b) Our Dyadic Embedding

Figure 3: Visualization with PCA of dyadic node embedding
learned by the Node2Vec on Cora dataset. Different colors
indicate whether two nodes’ sensitive features are the same.

with flexibility and unambiguity. Further, we propose a prac-
tical repairing implementation based on optimal transport
theory. Experiments on Cora and CiteSeer show that our
method has significant results in obtaining the dyadic fair-
ness of link prediction.
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