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Abstract

Deep declarative networks and other recent related works
have shown how to differentiate the solution map of a (con-
tinuous) parametrized optimization problem, opening up the
possibility of embedding mathematical optimization prob-
lems into end-to-end learnable models. These differentiability
results can lead to significant memory savings by providing
an expression for computing the derivative without needing
to unroll the steps of the forward-pass optimization procedure
during the backward pass. However, the results typically re-
quire inverting a large Hessian matrix, which is computation-
ally expensive when implemented naively. In this work we
study two applications of deep declarative networks—robust
vector pooling and optimal transport—and show how prob-
lem structure can be exploited to obtain very efficient back-
ward pass computations in terms of both time and memory.
Our ideas can be used as a guide for improving the computa-
tional performance of other novel deep declarative nodes.

Introduction
Deep declarative networks, also known as differentiable op-
timization or implicit layers (Gould, Hartley, and Campbell
2021; Agrawal et al. 2019; Amos and Kolter 2017), are deep
learning models that support propagating (exact) gradients
backwards through the solution of a continuous optimiza-
tion problem. This is achieved by applying the implicit func-
tion theorem to the optimality conditions of the problem at
a given solution. The advantage of this approach is that in-
termediate results produced by the (typically iterative) opti-
mization algorithm need not be cached for use in the back-
ward pass. Indeed, non-differentiable steps can be applied
during the forward pass and details of the optimization al-
gorithm do not even need to be known for calculating the
gradient in the backward pass.

Specifically, an expression for the Jacobian Dy(x) of the
output y with respect to the input x can be formulated know-
ing only the optimality conditions for the problem at hand
and the current solution. Moreover, given a software imple-
mentation of the objective and constraints (or the optimal-
ity condition directly) the gradient can be computed with-
out additional coding by automatic differentiation (Paszke
et al. 2017; Blondel et al. 2021). However, notwithstanding
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the significant savings in development time, automatic dif-
ferentiation can in some situations lead to suboptimal com-
putations, and implemented poorly the result may be even
slower and more memory intensive than unrolling and back-
propagating through the forward pass optimization loop.

The core operation performed by a deep learning node or
layer during the backward pass is to calculate the gradient
of the loss function (or global objective) DJ(x) with respect
to the node’s inputs (or parameters) given the gradient of the
loss function with respect to its outputs DJ(y). The calcula-
tion is an instance of the chain rule for differentiation:

DJ(x) = DJ(y) · Dy(x), (1)

where J is the loss function and Dy(x) is the gra-
dient of the output with respect to the input. In Py-
Torch this is the role of the backward method of
autograd.Function (Paszke et al. 2017) that then al-
lows gradients to back-propagate through the entire network.

Gould, Hartley, and Campbell (2021) consider deep
declarative nodes defined by second-order differentiable,
equality constrained, optimization problems parametrized
by an n-dimensional input x of the form

y(x) ∈ arg minu∈Rm f(x, u)
subject to hi(x, u) = 0, i = 1, . . . , p

(2)

and give an expression for Dy(x) as

H−1AT
(
AH−1AT

)−1 (
AH−1B − C

)
−H−1B, (3)

where A, B, C and H are objects (matrices or tensors) of
first- and second-order (mixed) partial derivatives of the ob-
jective and constraint functions with respect to x ∈ Rn and
y ∈ Rm. Specifically,

A = DY h(x, y) ∈ Rp×m

B = D2
XY f(x, y)−

p∑
i=1

λiD2
XY hi(x, y) ∈ Rm×n

C = DXh(x, y) ∈ Rp×n

H = D2
Y Y f(x, y)−

p∑
i=1

λiD2
Y Y hi(x, y) ∈ Rm×m

and λ ∈ Rp satisfies λTA = DY f(x, y). Here, the nota-
tion comes from Gould, Hartley, and Campbell (2021) with



DZ denoting partial derivatives with respect to variables Z.
Naive implementation of Eqn. 3 requires O(max{m3, p3})
operations due to the matrix inversions.

In general, the loss function J is scalar-valued and
summed over each training example in a mini-batch. As such
gradients of J with respect to each node’s inputs and out-
puts decompose over elements of the mini-batch, and Equa-
tions 1 and 3 can be evaluated independently (and in paral-
lel) for each training example of the mini-batch. Let b be the
size of the mini-batch, n be the size of the input and m be
the size of the output. Then storage for DJ(y), Dy(x), and
DJ(x) requires O(bm), O(bnm) and O(bn) bytes, respec-
tively. However, for many optimization problems we do not
need to construct Dy(x) explicitly and can instead exploit
its structure to save both computation and memory.

Deep declarative networks provide a powerful and flexi-
ble tool that has been applied to a growing number of appli-
cations including video classification (Fernando et al. 2016),
visual Sudoku (Amos and Kolter 2017; Wang et al. 2019),
blind PnP (Campbell, Liu, and Gould 2020; Chen et al.
2020) and meta-learning (Lee et al. 2019). The contribu-
tion of this paper is to provide case studies that demonstrate
general principles for implementing efficient backward pass
computation in deep declarative nodes so as not to be a bot-
tleneck. Based on the case studies and our experience, we
conclude with tips and advice for implementing new declar-
ative nodes.

Background and Related Work
Automatic differentiation is the backbone of modern deep
learning software frameworks such as PyTorch (Paszke et al.
2017). It allows rapid experimentation with different net-
work architectures and implementation of new differentiable
processing nodes, where the forward pass can be explicitly
implemented as a sequence of steps, themselves differen-
tiable expressions. Deep declarative networks (Gould, Hart-
ley, and Campbell 2021) introduced a new form of pro-
cessing node as the solution to an optimization problem,
where the algorithm for implementing the forward pass is
not explicitly defined, but where back-propagation through
the node is still possible.

Early examples of such declarative nodes in deep net-
works (Amos and Kolter 2017; Gould et al. 2016; Fernando
et al. 2016) relied on hand-coded implementations of the
backward pass. Later works show that automatic differen-
tiation techniques can also be applied in the case of deep
declarative nodes by differentiating the optimality condi-
tions for the problem at hand (Agrawal et al. 2019; Diamond
and Boyd 2016; Gould, Hartley, and Campbell 2021; Blon-
del et al. 2021), dramatically simplifying the implementa-
tion of these nodes. However, this automatic approach is less
able to exploit structure that may exist in the problem, and
as a result is suboptimal. Thus, it is sometimes desirable to
revert to carefully crafted manual implementations.

Early work that exploits problem structure includes Fer-
nando and Gould (2016) for the case of differentiable rank
pooling, where the Sherman–Morrison formula (Horn and
Johnson 1991) was used to efficiently compute the inverse
of a Hessian matrix required during the backward pass. The

same work and others suggest applying approximations to
simplify the backward pass, e.g., taking the diagonal of the
Hessian (Fernando and Gould 2016), ignoring constraints,
or heavily regularising to reduce the number of iterations in
the forward pass (Asano, Rupprecht, and Vedaldi 2020). We
provide further examples showing general patterns for ex-
ploiting structure and opportunities for approximation.

Case Studies
We present two case studies of deep declarative nodes—one
unconstrained and one constrained. The case studies follow
a generic recipe for implementing deep declarative nodes:
(i) Write out the mathematical expressions for the objective
and constraints; (ii) Derive the relevant partial derivatives
needed in Eqn. 3; (iii) Inspect the components for structure
and consider how to implement them efficiently; (iv) Code
and test the forward and backward passes. Experiments pro-
filing memory and running time are included for each exam-
ple, and full PyTorch source code is available.1

Robust Vector Pooling
Consider the problem of computing a robust estimate for the
mean of a set of m-dimensional points X = {xi ∈ Rm |
i = 1, . . . , n}. That is, we assume that our data X is noisy
and wish to find the point y ∈ Rm that best approximates
the mean of the noise-free data. If we knew the noise model
then this amounts to solving a maximum-likelihood prob-
lem. For example, under an isotropic Gaussian noise model
(or no noise) the best approximation is the sample mean,
y = 1

n

∑n
i=1 xi. In other situations, we may want to reduce

the effect of outliers, and do so by finding a point y that min-
imizes the sum of costs for the distance to each point xi,

y ∈ arg minu∈Rm

n∑
i=1

φ(‖u− xi‖2;α), (4)

where φ : R→ R+ is a penalty function parametrized by α.
For the one-dimensional case (m = 1) this is an instance of
the penalty function approximation problem (Boyd and Van-
denberghe 2004). When using a quadratic penalty function,
z 7→ 1

2z
2, the solution is the sample mean. However, this is

not robust to outliers and many other penalty functions have
been proposed (e.g., see Tab. 1).2

The objective function for the robust vector pooling opti-
mization problem (Eqn. 4) is

f(X , u) =

n∑
i=1

φ(‖u− xi‖2;α) =

n∑
i=1

φ(zi;α), (5)

1All results are reported using PyTorch 1.8.1 with robust vector
pooling running on NVIDIA GeForce RTX 2080 GPU and optimal
transport on NVIDIA GeForce RTX 3090.

2Note that Gould, Hartley, and Campbell (2021) consider the
one-dimensional case, applying the penalty function to u − xi,
which is computationally more straightforward since H and B are
scalars. Here we generalize to the vector case and apply the penalty
function to ‖u − xi‖2, which requires more care in implementing
operations on m-by-m matrices.



where we have written zi = ‖u−xi‖2. Since the problem is
unconstrained, the gradient of the minimizer y with respect
to each of the xj reduces to (Gould, Hartley, and Campbell
2021, Proposition 4.4)

DXj
y = −H−1B, (6)

where H = D2
Y Y f and B = D2

XjY f . Since f decomposes
as a sum of penalty functions φ, it suffices to just consider
D2
Y Y φ and D2

XY φ. Let us start by computing DY φ for the
i-th data point,

DY φ(zi;α) = φ′(zi;α)DY zi =
φ′(zi;α)

zi
(y − xi)T, (7)

where φ′ is the first derivative of φ. Computing second
derivatives, we have

D2
Y Y φ(zi;α) =

φ′(zi;α)

zi
Im×m + (8)(

φ′′(zi;α)

z2i
− φ′(zi;α)

z3i

)
(y − xi)(y − xi)T

= κ1(zi)Im×m + κ2(zi)(y − xi)(y − xi)T,

where κ1 and κ2 are quantities that depend on the penalty
function and zi (see Tab. 1). By anti-symmetry of xi and y
in Eqn. 7, we have D2

XjY φ(zj ;α) = −D2
Y Y φ(zj ;α). We

can therefore write the following expression for DXj
y,(

n∑
i=1

κ1(zi)I + κ2(zi)(y − xi)(y − xi)T
)−1

︸ ︷︷ ︸
H−1(

κ1(zj)I + κ2(zj)(y − xj)(y − xj)T
)

︸ ︷︷ ︸
−B

. (9)

A naive implementation of this expression would be pro-
hibitively expensive since B is an m-by-m matrix that must
to be computed separately for each point xj ∈ X (or stored
if computed in batch during the construction of H requiring
O(nm2) memory). It is preferable to compute DXjy for all
j at the same time, i.e., in batch, to make use of GPU paral-
lelization, which further exacerbates the memory problem.
A better approach is to evaluate the entire expression for the
gradient of the loss function (Eqn. 1) from left-to-right.

Let vT = DJ(y) be the derivative of the loss function
with respect to the output, i.e., the incoming backward gra-
dient. Our goal is to compute DJ(xi) for i = 1, . . . , n. We
have, DJ(xi) = vTH−1B. Letting wT = vTH−1 be ob-
tained by solving v = Hw using Cholesky factorization and
back substitution. Note that this can be computed once for
all points in the input as it is independent of which xi we are
taking the derivative with respect to. We then have

DJ(xi) = κ1(zi)w
T + κ2(zi)w

T(y − xi)(y − xi)T. (10)

Taking the inner product wT(y − xi) first, instead of the
outer product (y−xi)(y−xi)T, results in significant memory

Figure 1: Time (top) and memory (bottom) requirements for
forward and backward passes of robust vector pooling on
the CPU. The 2D feature map (

√
n ×
√
n) has m = 128

channels, and the batch size one. We use L-BFGS in the for-
ward pass except for quadratic, which has a closed-form so-
lution. For non-convex penalties we take the best solution
from two different initializations. The backward pass is im-
plemented by implicit differentiation following the expres-
sion in Eqn. 10 (code in Fig. 2).

and computational savings, requiring only O(nm) bytes of
storage when processed in batch versus O(nm2). Note also
that some penalty functions have κ2 ≡ 0, e.g., quadratic,
thus avoiding this computation entirely (see Tab. 1).

Fig. 2 shows PyTorch source code for the backward pass.
The code handles both the case of κ2 = 0 (Lines 9–10) and
the case of κ2 6= 0 (Lines 12–20), and follows a batch imple-
mentation of the expression above. Profiling of forward and
backward passes for different size problems and different
penalty functions is shown in Fig. 1. Observe that memory
for the forward and backward passes is comparable.

Optimal Transport
Optimal transport is a very popular algorithm in machine
learning for measuring the distance between two probabil-
ity distributions. It can also be used to find matches be-
tween sets of objects (e.g., in solving the blind PnP prob-
lem (Campbell, Liu, and Gould 2020)). The entropy regular-
ized optimal transport problem can be written as the linearly
constrained mathematical program,

minimize (over P ∈ Rm×n+ ) 〈P,M〉+ 1
γKL(P‖rcT)

subject to P1 = r
PT1 = c,

(11)

where M ∈ Rm×n is the input cost matrix, r and c are posi-
tive vectors of row and column sums (with 1Tr = 1Tc = 1),
and γ > 0 controls the strength of the regularization term.



φ(z;α) κ1(z;α) κ2(z;α)

QUADRATIC 1
2
z2 1 0

PSEUDO-HUBER α2

(√
1 +

(
z
α

)2 − 1

) (
1 +

(
z
α

)2)−1/2

− 1
α2

(
1 +

(
z
α

)2)−3/2

HUBER

{
1
2
z2 for |z| ≤ α

α(|z| − 1
2
α) otherwise

{
1 for |z| ≤ α
α/|z| otherwise

{
0 for |z| ≤ α
−α/|z|3 otherwise

WELSCH 1− exp
(
− z2

2α2

)
1
α2 exp

(
− z2

2α2

)
− 1
α4 exp

(
− z2

2α2

)
TRUNC. QUAD.

{
1
2
z2 for |z| ≤ α

1
2
α2 otherwise

{
1 for |z| ≤ α
0 otherwise

0

Table 1: Parameters κ1 and κ2 for various robust penalty functions φ where κ1(z) = φ′(z)/z and κ2(z) = (φ′′(z)−κ1(z))/z2.
In the case of robust vector pooling the argument z is non-negative and the absolute value calculations can be omitted.

1 def backward(ctx, v):
2 x, y = ctx.saved_tensors
3 b, m = x.shape[:2]
4
5 y_minus_x = y.view(b,m,1) - x.view(b,m,-1)
6 z = linalg.norm(y_minus_x, dim=1, keepdim=True) + 1.0e-9
7
8 k1, k2 = ctx.penalty.kappa(z, ctx.alpha)
9 if all(k2 == 0.0):

10 return (k1 * (y_grad / k1.sum(dim=2)).view(b,m,1)).reshape(x.shape)
11
12 H = k1.sum(dim=2).view(b,1,1) * eye(m).view(1,m,m) + \
13 einsum("bik,bjk->bij", y_minus_x, k2 * y_minus_x)
14
15 L = cholesky(H)
16 w = cholesky_solve(v.view(b,m,-1), L).view(b,m)
17
18 u = einsum("bi,bik->bk", w, k2 * y_minus_x)
19
20 return (k1 * w.view(b,m,1) + einsum("bk,bik->bik", u, y_minus_x)).reshape(x.shape)

Figure 2: Implementation of the backward pass for robust vector pooling. It is assumed that the b-by-m-by-n input and b-
by-m output are cached in the forward pass. Global pooling is done over m-dimensional features for each of the b batches
independently. The function ctx.penalty.kappa computes κ1 and κ2 for the given penalty function (see Tab. 1). Full
source code available at http://deepdeclarativenetworks.com.

What makes this formulation attractive from a computa-
tional perspective is that it can be solved very efficiently by
the Sinkhorn algorithm, an iterative algorithm that performs
successive row and column normalizations (Cuturi 2013).

In computing derivatives we arrive at similar expressions
to Luise et al. (2018), who present an algorithm for dif-
ferentiating with respect to r and c, but where we directly
use the results for deep declarative nodes (Eqn. 3). To find
DMP , the Jacobian of P with respect to M , let f(M,P ) =∑
ijMijPij+ 1

γ

∑
ij Pij (logPij − log ricj) be the entropy

regularized optimal transport objective. We can then write
the following partial derivatives,

∂f

∂Pij
= Mij +

1

γ
logPij +

1

γ
− 1

γ
log ricj , (12)

Hij,kl =
∂2f

∂Pij∂Pkl
=

{
1

γPij
if (i, j) = (k, l)

0 otherwise,
(13)

Bij,kl =
∂2f

∂Pij∂Mkl
=

{
1 if (i, j) = (k, l)

0 otherwise,
(14)

for i = 1, . . . ,m and j = 1, . . . , n. Flattening the input
M and output P into vectors rowwise we have H−1 =
diag(γPij) and B = Imn×mn. That these are diagonal
makes sense, since if not for the linear equality constraints
each Pij would only depend on Mij and not any other Mkl

for kl 6= ij. Moreover, since B is the identity matrix we can
ignore it from any calculations.

The primary challenge now is computing the term
(AH−1AT)−1 in Eqn. 3. Here the matrixA of partial deriva-
tives of the constraint functions with respect to the output is
formed as the coefficients of the Pij in the constraint func-
tions of Problem 11,

h :

{ ∑n
j=1 Pij − ri for i = 1, . . . ,m∑m
i=1 Pij − cj for j = 1, . . . , n

}
= 0. (15)

Note that the set contains a redundant constraint; if any
m + n − 1 constraints are satisfied then the remaining con-
straint will also be satisfied. To apply Eqn. 3 we must remove
one constraint otherwise A will not be full rank (Gould,
Hartley, and Campbell 2021, Corollary 4.9). Removing the



first constraint and where Pij has again been flattened row-
wise, we have

A =


0Tn 1Tn · · · 0Tn
...

...
. . .

...
0Tn 0Tn · · · 1Tn
In×n In×n · · · In×n

 ∈ R(m+n−1)×mn.

(16)

It is straightforward to show that

AH−1AT =

[
diag

(∑n
j=1H

−1
pj,pj | p = 2, . . . ,m

)
(H−1ij,ij)j=1,...,n×i=2,...,m

(H−1ij,ij)i=2,...,m×j=1,...,n

diag
(∑m

i=1H
−1
ip,ip | p = 1, . . . , n

)] (17)

= γ

[
diag(r2:m) P2:m,1:n

PT
2:m,1:n diag(c)

]
(18)

by considering the (p, q)-th entry of AH−1AT for p, q ∈
1, . . . ,m+ n− 1 as,

(AH−1AT)pq =

m∑
i=1

n∑
j=1

Ap,ijAq,ij
Hij,ij

(19)

and substituting γPij for H−1ij,ij , and r2:m and c for their
corresponding sums.

Now we can directly compute (AH−1AT)−1 in O((m+
n − 1)3) time or make use of more efficient block matrix
inversion (Horn and Johnson 1991) results to compute in
O((m− 1)3) time,3[

Λ11 Λ12

ΛT
12 Λ22

]
=

[
diag(r2:m) P2:m,1:n

PT
2:m,1:n diag(c)

]−1
, (20)

where each block is calculated as

Λ11 =
(

diag(r2:m)− P2:m,1:ndiag(c)
−1
PT
2:m,1:n

)−1
(21)

Λ12 = −Λ11P2:m,1:ndiag(c)
−1 (22)

Λ22 = diag(c)
−1 (

I − PT
2:m,1:nΛ12

)
(23)

and we use Cholesky factorization to multiply by Λ11 rather
than inverting explicitly.

A PyTorch implementation for the gradient is shown in
Fig. 4. Here we evaluate the expression for the gradient from
left-to-right and replace explicit multiplication by A with
corresponding summations of terms in the multiplicand (see
Line 9). Rather than flattening P we keep it in tensor form.
Line 6 initializes the calculation of DMJ with −vTH−1B.
This can be seen as an approximation to the gradient with
constraints ignored and is close to the true gradient when
only a small number of Sinkhorn iterations is needed in the
forward pass.

Profiling this approximation is included in our experi-
ments, where we also compare block inverse of AH−1AT

3Or in O(n3) time if n < m using an alternative formula for
the block inverse.

(a) CPU (batch size 1) (b) GPU (batch size 16)

(c) 10 iterations (d) problem size 500

Figure 3: Time and memory comparison for optimal trans-
port. Our block-inverse implicit differentiation is much
faster than full-inverse version and uses less memory than
autograd.

versus the full inverse (see Fig. 3). Important to observe is
that unrolling Sinkhorn (autograd) and the implicit differ-
entiation approach with block inverse have approximately
the same running time (Fig. 3(a) and (b)) whereas the latter
is much more memory efficient, improving over unrolling
Sinkhorn beyond four iterations for problems of size 500-
by-500 (Fig. 3(d)).

We can similarly back propagate through r and c (c omit-
ted for brevity). Here we note that

∂f

∂ri
= − 1

γri

n∑
j=1

Pij = − 1

γ
=⇒ ∂2f

∂ri∂Pkl
= 0. (24)

As such B = 0 and the expression in Eqn. 3 reduces to

−H−1AT
(
AH−1AT

)−1
C, (25)

where, by inspection of the constraint function in Eqn. 15,

C =
[
∂hp

∂ri
| p = 1, . . . ,m+ n− 1, i = 1, . . . ,m

]
(26)

= −
[
Im−1×m

0n×m

]
∈ R(m+n−1)×m. (27)

The calculation of vTH−1AT(AH−1AT)−1 can be
reused for the gradients associated with M , r and c as done
in Lines 22 and 23 of the code. Note that taking a step in
the (negative) gradient direction may destroy normalization
of r (or c) required by the optimal transport problem. One
way to ensure normalization is preserved is to define r in
terms of another positive vector r̃ as r = r̃/1Tr̃. The back-
ward going gradient would then need to be post-multiplied
by Dr(r̃) = (In×n − r1T)/1Tr̃, omitted in Fig. 4 for sim-
plicity of exposition.



1 def backward(ctx, dJdP):
2 M, r, c, P = ctx.saved_tensors
3 b, m = M.shape[:2]
4
5 # initialize backward gradients (-vˆT Hˆ{-1} B with v = dJdP and B = I)
6 dJdM = -1.0 * ctx.gamma * P * dJdP
7
8 # compute [vHAt1, vHAt2] = vˆT Hˆ{-1} AˆT as two blocks
9 vHAt1, vHAt2 = dJdM[:, 1:m].sum(dim=2), dJdM.sum(dim=1)

10
11 # compute [v1,v2] = -vˆT Hˆ{-1} AˆT (A Hˆ{-1] AˆT)ˆ{-1} by block inverse
12 PdivC = P[:, 1:m] / c.view(b, 1, -1)
13 block_11 = cholesky(diag_embed(r[:, 1:m]) - einsum("bij,bkj->bik", P[:, 1:m], PdivC))
14 block_12 = cholesky_solve(PdivC, block_11)
15 block_22 = diag_embed(1/c) + einsum("bji,bjk->bik", block_12, PdivC)
16
17 v1 = cholesky_solve(vHAt1.view(b,m-1,1), block_11).view(b,m-1) - \
18 einsum("bi,bji->bj", vHAt2, block_12)
19 v2 = einsum("bi,bij->bj", vHAt2, block_22) - einsum("bi,bij->bj", vHAt1, block_12)
20
21 # compute vˆT Hˆ{-1} AˆT (A Hˆ{-1] AˆT)ˆ{-1} A Hˆ{-1} B - vˆT Hˆ{-1} B
22 dJdM[:, 1:m] -= v1.view(b, m-1, 1) * P[:, 1:m]
23 dJdM -= v2.view(b, 1, -1) * P
24
25 # compute -vˆT Hˆ{-1} AˆT (A Hˆ{-1] AˆT)ˆ{-1} C for r and c
26 dJdr = -1.0 / ctx.gamma * cat((zeros(b, 1), v1), dim=1)
27 dJdc = -1.0 / ctx.gamma * v2
28
29 return dJdM, dJdr, dJdc

Figure 4: Implementation of the backward pass for optimal transport. Assumes that the inputs M , r and c, and output P are
cached by the forward pass. Input M and output P consist of b batches of m-by-n matrices. Full source code available at
http://deepdeclarativenetworks.com.

Discussion
In this paper we studied two examples of deep declarative
nodes and showed how to implement an efficient backward
pass by exploiting problem structure. This results in better
utilization of memory and compute than can be achieved
from automatic differentiation (autodiff) or unrolling the for-
ward pass optimization loop. However, for other problems
unrolling or autodiff may be satisfactory for a given task de-
spite being computationally more expensive. We now sum-
marize several key practical implementation considerations
for developing new deep declarative nodes if compute is an
issue, using our case studies as a guide.

It is judicious to first implement and experiment with the
declarative node using a generic automatic differentiation
approach. Several open-source tools make this easy (Gould,
Hartley, and Campbell 2021; Agrawal et al. 2019; Blondel
et al. 2021). Moreover, having such an implementation al-
lows for rapid testing of new ideas and will facilitate debug-
ging of future specialized code in addition to the use of nu-
merical gradient checking (e.g., autograd.gradcheck).

Next, inspect the required derivatives for structure and use
this to simplify the computation. For example, efficient algo-
rithms exist for inverting certain Hessian matrices (diagonal
or block, triangular, etc.), and multiplication by 0-1 matri-
ces can be replaced with summations. Importantly, when the
objective of the problem decomposes elementwise over the
optimization variables, such as in optimal transport, then the
Hessian matrix will be diagonal. Related to this is thinking
about the order of operations in Eqn. 3, which can dramat-

ically affect the memory required for storing intermediate
results. The vector-Jacobian product used for computing the
loss in the backward pass is a good example of this, as is
the left-to-right evaluation of the outer products required for
robust vector pooling, which is common when norms appear
in objective or constraint functions.

Other standard considerations include saving calculations
in the forward pass (if tractable to do so); disabling autod-
iff in the forward pass, which avoids unnecessary construc-
tion of the computation graph; performing inline operations
to reuse memory buffers; and batch operations for better
parallelism. Numerical stability can also be an issue, espe-
cially when the (locally) optimal solution is not isolated or
the Hessian is almost singular. Here, linear system solvers
(e.g., Cholesky) should be used instead of inverting matrices
and trust-region approaches (or regularization of the Hes-
sian) can be used to improve stability (Toso, Campbell, and
Russell 2019; Gould, Hartley, and Campbell 2021).

Finally, reparametrizing the problem can give different
computational trade-offs, e.g., removing constraints to make
a problem unconstrained or adding variables (and associated
constraints) so that the Hessian is structured. Alternatively,
taking a hybrid approach where structure is exploited for
some terms and autodiff used for the rest. This is particularly
attractive when the optimality conditions can be written as
the composition of many functions (as was done for example
in Campbell, Liu, and Gould (2020)). Moreover, it presents
an exciting future research direction to see whether some of
these techniques can be applied automatically.
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